Efficient Density-Peaks Clustering Algorithms on Static and Dynamic Data in Euclidean Space

نویسندگان

چکیده

Clustering multi-dimensional points is a fundamental task in many fields, and density-based clustering supports applications because it can discover clusters of arbitrary shapes. This article addresses the problem Density-Peaks (DPC) Euclidean space. DPC already has applications, but its straightforward implementation incurs O ( n 2 ) time, where number points, thereby does not scale to large datasets. To enable on datasets, we first propose empirically efficient exact algorithm, Ex-DPC. Although this algorithm much faster than implementation, still suffers from time theoretically. We hence new Ex-DPC++, that runs o time. accelerate their efficiencies by leveraging multi-threading. Moreover, real-world datasets may have updates (point insertions deletions). It important support cluster updates. end, D-DPC for fully dynamic DPC. conduct extensive experiments using real our experimental results demonstrate algorithms are scalable.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance

با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...

A Comparative Study of Some Clustering Algorithms on Shape Data

Recently, some statistical studies have been done using the shape data. One of these studies is clustering shape data, which is the main topic of this paper. We are going to study some clustering algorithms on shape data and then introduce the best algorithm based on accuracy, speed, and scalability criteria. In addition, we propose a method for representing the shape data that facilitates and ...

متن کامل

Static and Dynamic Algorithms for k-Point Clustering Problems

Let S be a set of n points in d-space aild let 1 :5 k :5 n be an integer. A unified approach is given for solving the problem of finding a sub set of S of size k that mjnimizes some closeness measure, such as the diameter, perimeter or the circumradius. Moreover, data structures are given that maintain such a subset under insertions and deletions of points.

متن کامل

DFC: Density Fragment Clustering without Peaks

The density peaks clustering (DPC) algorithm is a novel density-based clustering approach. Outliers can be spotted and excluded automatically, and clusters can be found regardless of the shape and of dimensionality of the space in which they are embedded. However, it still has problems when processing a complex data set with irregular shapes and varying densities to get a good clustering result...

متن کامل

Density Peaks Clustering with Differential Privacy

Density peaks clustering (DPC) is a latest and well-known density-based clustering algorithm which offers advantages for finding clusters of arbitrary shapes compared to others algorithm. However, the attacker can deduce sensitive points from the known point when the cluster centers and sizes are exactly released in the cluster analysis. To the best of our knowledge, this is the first time that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACM Transactions on Knowledge Discovery From Data

سال: 2023

ISSN: ['1556-472X', '1556-4681']

DOI: https://doi.org/10.1145/3607873